1,953 research outputs found

    Secure Transmission in Multi-Cell Massive MIMO Systems

    Full text link
    In this paper, we consider physical layer security provisioning in multi-cell massive multiple-input multiple-output (MIMO) systems. Specifically, we consider secure downlink transmission in a multi-cell massive MIMO system with matched-filter precoding and artificial noise (AN) generation at the base station (BS) in the presence of a passive multi-antenna eavesdropper. We investigate the resulting achievable ergodic secrecy rate and the secrecy outage probability for the cases of perfect training and pilot contamination. Thereby, we consider two different AN shaping matrices, namely, the conventional AN shaping matrix, where the AN is transmitted in the null space of the matrix formed by all user channels, and a random AN shaping matrix, which avoids the complexity associated with finding the null space of a large matrix. Our analytical and numerical results reveal that in multi-cell massive MIMO systems employing matched-filter precoding (1) AN generation is required to achieve a positive ergodic secrecy rate if the user and the eavesdropper experience the same path-loss, (2) even with AN generation secure transmission may not be possible if the number of eavesdropper antennas is too large and not enough power is allocated to channel estimation, (3) for a given fraction of power allocated to AN and a given number of users, in case of pilot contamination, the ergodic secrecy rate is not a monotonically increasing function of the number of BS antennas, and (4) random AN shaping matrices provide a favourable performance/complexity tradeoff and are an attractive alternative to conventional AN shaping matrices

    Power Allocation for Conventional and Buffer-Aided Link Adaptive Relaying Systems with Energy Harvesting Nodes

    Full text link
    Energy harvesting (EH) nodes can play an important role in cooperative communication systems which do not have a continuous power supply. In this paper, we consider the optimization of conventional and buffer-aided link adaptive EH relaying systems, where an EH source communicates with the destination via an EH decode-and-forward relay. In conventional relaying, source and relay transmit signals in consecutive time slots whereas in buffer-aided link adaptive relaying, the state of the source-relay and relay-destination channels determines whether the source or the relay is selected for transmission. Our objective is to maximize the system throughput over a finite number of transmission time slots for both relaying protocols. In case of conventional relaying, we propose an offline and several online joint source and relay transmit power allocation schemes. For offline power allocation, we formulate an optimization problem which can be solved optimally. For the online case, we propose a dynamic programming (DP) approach to compute the optimal online transmit power. To alleviate the complexity inherent to DP, we also propose several suboptimal online power allocation schemes. For buffer-aided link adaptive relaying, we show that the joint offline optimization of the source and relay transmit powers along with the link selection results in a mixed integer non-linear program which we solve optimally using the spatial branch-and-bound method. We also propose an efficient online power allocation scheme and a naive online power allocation scheme for buffer-aided link adaptive relaying. Our results show that link adaptive relaying provides performance improvement over conventional relaying at the expense of a higher computational complexity.Comment: Submitted to IEEE Transactions on Wireless Communication

    Non-Orthogonal Multiple Access for FSO Backhauling

    Full text link
    We consider a free space optical (FSO) backhauling system which consists of two base stations (BSs) and one central unit (CU). We propose to employ non-orthogonal multiple access (NOMA) for FSO backhauling where both BSs transmit at the same time and in the same frequency band to the same photodetector at the CU. We develop a dynamic NOMA scheme which determines the optimal decoding order as a function of the channel state information at the CU and the quality of service requirements of the BSs, such that the outage probabilities of both BSs are jointly minimized. Moreover, we analyze the performance of the proposed NOMA scheme in terms of the outage probability over Gamma-Gamma FSO turbulence channels. We further derive closed-form expressions for the outage probability for the high signal-to-noise ratio regime. Our simulation results confirm the analytical derivations and reveal that the proposed dynamic NOMA scheme significantly outperforms orthogonal transmission and existing NOMA schemes.Comment: This paper has been submitted to IEEE WCNC 201

    NOMA Assisted Wireless Caching: Strategies and Performance Analysis

    Full text link
    Conventional wireless caching assumes that content can be pushed to local caching infrastructure during off-peak hours in an error-free manner; however, this assumption is not applicable if local caches need to be frequently updated via wireless transmission. This paper investigates a new approach to wireless caching for the case when cache content has to be updated during on-peak hours. Two non-orthogonal multiple access (NOMA) assisted caching strategies are developed, namely the push-then-deliver strategy and the push-and-deliver strategy. In the push-then-deliver strategy, the NOMA principle is applied to push more content files to the content servers during a short time interval reserved for content pushing in on-peak hours and to provide more connectivity for content delivery, compared to the conventional orthogonal multiple access (OMA) strategy. The push-and-deliver strategy is motivated by the fact that some users' requests cannot be accommodated locally and the base station has to serve them directly. These events during the content delivery phase are exploited as opportunities for content pushing, which further facilitates the frequent update of the files cached at the content servers. It is also shown that this strategy can be straightforwardly extended to device-to-device caching, and various analytical results are developed to illustrate the superiority of the proposed caching strategies compared to OMA based schemes
    • …
    corecore